
I n T h i s I s s u e

V o l u m e  , N u m b e r 

p . 1

Adobe Premiere Plug-In API

p . 2

How to Reach Us

p . 7

Developing with

Adobe Fetch

p . 9

Developing with

Adobe PageMaker

p . 1 1

Acrobat Column

p . 1 3

Developing with Illustrator

p . 1 4

PostScript Language

Technologies

p . 1 6

Questions and Answers

The Adobe Premiere Plug-In API

The news services seem to constantly report on the latest in the digital video industry. Much

of what is discussed remains hype, but there are examples of digital video successes, particularly

in the role of video editing. Adobe Premiere™ is one of those successes. The plug-in architec-

ture of the program makes it possible for you to be a part of that success.

The Adobe Premiere program allows the user to capture, edit, view, and output digital movies

on a personal computer. Media “clips”, including movies, graphics, and sounds, are collected

in a “project” and then compiled into digital movies. Effects such as combining two clips or

transitioning between two clips can be applied. Filters can be applied to a movie to produce

distortions or other effects in the same vein as Adobe Photoshop™ filters.

The latest versions of the Adobe Premiere application for Macintosh® and Windows® use a

plug-in architecture to produce these effects and extend the functionality of the program.

Adobe Premiere plug-ins are stand-alone pieces of code loaded as needed by the main pro-

gram. Macintosh plug-ins are code resources and Windows plug-ins are DLLs. Most Adobe

Photoshop version 2.5 filters will work with Adobe Premiere; however, creating a Premiere-

specific version of the filter will allow it to be more memory efficient and flexible.

Types of Plug-Ins

Adobe Premiere provides several different types of filters. The basic plug-in types are discussed

here. Video and audio filters and export modules operate on some defined data and process it

to a new form. Adobe Premiere handles the overhead involved with retrieving and storing the

frames and sound data, allowing you to concentrate on the effect. Hardware control modules

control video hardware in or attached to your computer.

Adobe Premiere also handles part of the user interface of the filter. At start-up, each plug-in

in the Plug-Ins directory will be added to the appropriate menu or dialog. In some cases,

Adobe Premiere provides some additional interface functionality. In the case of transitions,

for instance, Adobe Premiere software displays a preview of each transition effect in the

transitions dialog. This interface is handled automatically by Adobe Premiere. Your plug-ins

can handle additional interface issues as needed, usually by using a dialog.

Transitions and Video Filters

A transition in Adobe Premiere is like a transition in film, where two separate segments have

some appropriate effect to smoothly change scenes. A transition plug-in is given a series of

frames from two digital video sources and processes them into one final frame. Examples of

transitions include a fade to black and then to the new video clip, and a page turning effect.

a

continued on page 

H o w T o R e a c h U s

DEVELOPERS ASSOCIATION HOTLINE:

U . S . a n d C a n a d a :

₍    ₎    -    

M–F, 8 a.m.–5 p.m., PDT.

If all engineers are unavailable,

please leave a detailed message

with your developer number,

name, and telephone number,

and we will get back to you

within 24 hours.

E u r o p e :

+   -   -     -   

FAX :

U . S . a n d C a n a d a :

₍    ₎    -    

Attention:

Adobe Developers Association

E u r o p e :

+  -   -     -   

Attention:

Adobe Developers Association

EMAIL:

U . S .

devsup-person@mv.us.adobe.com

E u r o p e :

eurosupport@adobe.com

MAI L:

U . S . a n d C a n a d a :

Adobe Developers Association

Adobe Systems Incorporated

 Charleston Road

P.O. Box 

Mt. View, CA -

E u r o p e :

Adobe Developers Association

Europlaza

Hoogoorddreef a

 BE Amsterdam Z.O.

The Netherlands

Send all inquiries, letters and address
changes to the appropriate address
above.

A video filter is similar to a filter in Adobe Photoshop. Rather than merging two frames into

one, video filters process each frame of an affected clip into a final form.

Transitions are almost always time-variant; video filters can use a time factor if needed. Both

types of plug-ins are given the total duration in frames of the effect and the current frame

number. Both transitions and filters may present a dialog to obtain and store additional infor-

mation about how they should process the affected frames.

Audio Filters

An audio filter in Adobe Premiere takes an audio source and processes it into a final form.

An example of an audio filter included in the software package is Echo, which creates an echo

effect where the user controls the delay and other variables.

As with video effects, audio filters may be time-variant. The filter is given the total duration

in samples of the filter and the sample number of the first sample in the source buffer. Audio

filters may present a dialog to collect information to use in processing the audio.

2 A D A N e w s V o l u m e  , N u m b e r 

Premiere Plug-In API

For Each Frame In

The Transition

Transition

Duration

Current Frame

Frame

to Output

Source

Source

For Each Frame Affected

By The Filter

Source Video

Filter

Duration

Current Frame

Frame

to Output

For Each Sample Affected

By The Filter

Source Audio

Filter

Total samples

Sample number

Destination

Export Modules

Export modules are used to output all or part of the video being processed. There are two

types of export modules: data and ‘edit decision lists’ (EDLs). Both types of plug-ins are called

when the user chooses an item from the Export command of the File menu.

Export data modules work with the clip information and output it to some other format.

The plug-ins can request to work with audio, video, or both. Export modules normally put

up dialogs to ask the user for appropriate export parameters and a destination file.

The EDL export plug-in’s job is to export the current project into a text EDL format. Usually

these EDL files are used to drive more traditional video processing devices.

The EDL export module is provided with information about the project in the Adobe

Premiere application’s Construction window, which is normally used to generate a text file.

Export modules do not necessarily have to output information to files. Adobe Premiere

software’s “Print To Video” export module is a good example of a module where the output

is to the screen rather than to a file. An EDL plug-in might directly control several hardware

devices to assemble a project from source tapes.

Hardware Control Modules

The Adobe Premiere API allows plug-ins to directly control your computer and video

hardware. A zoom module in Adobe Premiere handles hardware-specific details of zooming

and video card mode-switching.

3 A D A N e w s V o l u m e  , N u m b e r 

Premiere Plug-In API

Project Edit Decision List

EDL

Export

Module

Zoom

Module

continued on page 

Adobe Japan Has Moved!

Please note that Adobe’s Tokyo

office has moved. Their new

location is as follows:

Adobe Systems Co., Ltd.

Yebisu Garden place Tower

4-20-3 Ebisu, Shibuya-ku

Tokyo 150 Japan

Tel: ---

Fax: ---

A device control module allows Adobe Premiere to control hardware devices such as tape

decks or laser disc players.

Device control modules are called by parts of Adobe Premiere that take video input, like

the Movie Capture window. A device control module’s most important functions are to set

hardware operating modes, tell Adobe Premiere what mode the hardware is in, and provide

Adobe Premiere software with timecode from the hardware.

The Plug-In Mechanism

The plug-ins described above all use a similar calling mechanism. To execute one, the Adobe

Premiere program first loads the plug-in code and then jumps to a predefined entry point,

which will be defined similar to:

short VideoFilter(short selector, VideoHandle theData);

Adobe Premiere uses a message passing scheme to control the plug-ins; the message is passed

in the selector variable. A message which all plug-ins receive is an execute message. This is

where the plug-in would apply its effect to the data Adobe Premiere supplies. Another com-

mon message is a setup message, where interaction is done with the user. Most often, the

plug-in uses platform specific dialog manager calls to handle this interaction. For the above

transition, these messages are defined as:

#define fsExecute 0
#define fsSetup 1

Other messages which might be passed are more plug-in specific. A hardware control module

might receive the message cmdZoomIn, for instance.

4 A D A N e w s V o l u m e  , N u m b e r 

Premiere Plug-In API

DevC

The entry point of your code receives the message and related data. Your main() function

would look something like:

//===
// Perform the filter
//===
pascal short main(short selector, VideoHandle theData)
{

short result = 0;

// Save the current state
...

// Act according to the selector
switch (selector) {

case fsExecute:
// do the transition
...
break;

case fsSetup:
// get any information
...
break;

}

// Restore the entry state
...

return(result);
}

The data passed to the entry function contains the information necessary for a plug-in to run.

A video filter would receive a record with the following information:

typedef struct {
Handle specsHandle; // User data for effect
GWorldPtr source; // The source frame
GWorldPtr destination; // The output frame
long part; // part/total = %complete
long total;
char preview; // No longer used
Handle privateData; // Data and function to
VFilterCallBackProcPtr callBack; // get other frames
BottleRec *bottleNecks; // Beyond article scope
short version; // Zero
short sizeFlags; // Info on output
long flags; // Unused
short fps; // The frames/second

} VideoRecord, **VideoHandle;

5 A D A N e w s V o l u m e  , N u m b e r 

Premiere Plug-In API

continued on page 

Since each type of plug-in requires different data, the record passed will depend on the plug-

in. For instance, notice the source pointer; if this were a transition plug-in, the record passed

would have two sources since a transition works on two frames at a time.

Given the message and data, the rest of the plug-in code is up to you. It might be massaging

the bits of the source frames or outputting the project information in some special format.

Platform Differences

With version 4.0 of Adobe Premiere for Macintosh and Windows the platform differences

have been minimized, though there is not a one-to-one feature correspondence. This is also

true of the platform-specific implementations of the plug-in APIs. The Macintosh version

provides an extensive library of routines that are useful to the plug-in developer. This is not

provided in the Windows version of the API. This is not an issue since they are not critical in

the development of filters.

Other differences in the APIs are primarily with basic platform differences. For instance,

Macintosh developers have the concept of a GWorld for graphics, for which there is no corre-

sponding structure in the Microsoft Windows API. Adobe Premiere for Windows defines a

similar mechanism, a PWorld, to address this. The API differences that exist are not a factor

in creating filters for both Macintosh and Windows.

Conclusion

The world of digital video will surely expand as the idea of “multimedia” begins to mature.

Adobe Premiere for Macintosh and Windows will be a major player in this future; and by

writing plug-ins for the program, you can easily take part in this success. The plug-ins can be

general effects such as transitions and filters to process video, or more specific modules to

integrate hardware with Adobe Premiere. The API offered by Adobe is an exciting opportunity

for developers interested in or committed to digital video.

For more information about developing Adobe Premiere plug-ins, your best course is to

join our Graphic Applications Plug-in Developers Program. This program gives you copies of

the latest Adobe Premiere Software Development Kit (SDK), plus support in your develop-

ment efforts. The SDK is also available electronically from Adobe’s FTP site, WWW (World

Wide Web), and bulletin board service. §

6 A D A N e w s V o l u m e  , N u m b e r 

Premiere Plug-In API

pnot Data Structures

QuickTime uses a resource of type ‘pnot’ with id 0 to store the

visual preview information. Its structure with QuickTime 1.0

is shown below:

typedef struct pnotResource {

unsigned long modDate; // last preview modification date

short version; // version of this pnot Resource

OSType resType; // resource type contains the preview

short resID; // resource id of preview

} pnotResource;

With QuickTime 1.5 this structure was expanded to:

typedef struct pnotResource {

unsigned long modDate; // last preview modification date

short version; // version of this pnot Resource

OSType resType; // resource type contains the preview

short resID; // resource id of preview

short numResItems; // number of additional file

descriptions

pnotResItem resItem[]; // array of file descriptions

} pnotResource;

This extended structure allows for an unlimited number of

additional pieces of file information. Each piece contains a

reference to its data using the following structure:

typedef struct pnotResItem {

unsigned long modDate; // last modification date of this item

OSType useType; // what type of data this is

OSType resType; // resource type containing this item

short resID; // resource id containing this item

short rgnCode; // Macintosh Region code for language

long reserved; // set to zero

} pnotResItem; *pnotResItemPtr;

The useType field indicates the purpose of the data pointed to

by this item. There are currently two different values defined

for this field. KeyW indicates that it points to a list of keywords,

typically stored in an STR# resource. Desc indicates that the item

points to a brief text description of the file, typically stored in

a TEXT resource. Apple encourages developers to expand the list

of types to include additional relevant kinds of information.

Fetch recognizes Prev useTypes, as well as KeyW and Desc useTypes.

A Prev useType indicates that it points to a full-size visual

preview stored in a PICT resource.

Adobe™ Fetch™ is a multimedia database product for the

Macintosh® that allows customers to catalog, browse, search,

retrieve, and reuse graphic, movie, and sound files.

The pnot Resource

A Standard from Apple Computer

You may be wondering how Adobe Fetch can catalog so

many different file types and how support for additional file

types can be added without revisions to the Fetch product.

There are three ways Adobe Fetch can obtain thumbnails

from files. One way is through the program’s own built-in

filters, which support a limited number of file formats. A

second way is through Apple’s Macintosh Easy Open tech-

nology. In this article, we discuss the third way for Fetch to

obtain thumbnails, which is for graphic applications to

include pnot resources in their files.

Some pnot History

With QuickTime® 1.0, Apple provided a standard way for

applications to add visual previews to document files. These

previews can be viewed from the standard file selection dialog

with any application that uses the QuickTime software’s

StandardGetFilePreview function.

The release of QuickTime 1.5 expanded the preview inter-

face. Previews may now contain movies and sounds, in

addition to pictures. Furthermore, the preview types may be

expanded by developers.

QuickTime, versions 1.5 and greater, also allows developers

to store other types of information about a file, in addition

to the visual preview. This information can include a brief

description of the file, a list of keywords, or any other

appropriate kind of data. Each piece of file information is

stored with its own language code to allow a single file to be

used in various countries. This should make life easier for

content providers. Each piece of file information is also

tagged with a modification date to make it easy for applica-

tions to determine when the data has been changed.

7 A D A N e w s V o l u m e  , N u m b e r 

Adobe Fetch

Developing With

Special Considerations

QuickTime 1.5 was modified so that it will not destroy any

data stored in the additional pnotResItem fields when creating,

updating, or removing file previews. Any applications which

work with file previews, and do not use the QuickTime soft-

ware’s routines for managing previews, should do the same.

If QuickTime encounters a file which contains a pnot resource

but the resType field of the pnot Resource data structure is set

to 0, it will treat it as if the file has no preview. This allows

developers to add a list of keywords, or a text description,

without being forced to create a visual file preview.

The modification date of a preview is an inexact number.

The problem is that the preview’s modification time is stored

in the file, and in order to store that time in the file it is neces-

sary to modify the file. This causes the file’s modification

time to be changed. Applications should allow for up to a one

minute difference between the file and preview modification

times before considering the times to be different.

How Fetch Uses pnot Information

When cataloging a file, the Fetch application will first look in

the pnot resource for preview information. If the pnot resource

references a PICT resource, Fetch will extract the PICT data

from the resource, generate a  x  pixel thumbnail from

that data, and store it in the database. If the extended pnot

resource references TEXT or STR# resources, Fetch will extract

the keywords from the STR# resource and the description

from the TEXT resource and store them in the database. These

keywords and descriptions will appear in the Fetch Item Info

dialog box.

When a user previews an image in Fetch, the Fetch applica-

tion will again look to the pnot resource to determine if a

preview is referenced there. Fetch will extract the preview

from the PICT resource that is referenced by the Prev useType

in the extended pnot structure. If there is no preview refer-

enced in the extended pnot structure and Fetch does not have

a built-in filter for the format, Fetch software will not provide

the user with a preview.

Application Support of pnot

Applications typically store a small thumbnail-size PICT in a

PICT resource referenced by the pnot resource structure and a

full-sized -bit QuickTime compressed preview in a separate

PICT resource referenced by the Prev useType field in the

extended pnot structure.

In the following example, PICT  contains a  x  pixel,

-bit, QuickTime compressed PICT. PICT  contains full-

sized, -bit, QuickTime compressed PICT. STR#  contains

a list of keywords in American English. TEXT  contains a

text description in American English.

struct pnotResource pnotSample = { date, 1, ‘PICT’, 128, 3,

{ date, ‘Prev’, ‘PICT’, 129, 0, 0}

{ date, ‘KeyW’, ‘STR#’, 140, 0, 0}

{ date, ‘Desc’, ‘TEXT’, 150, 0, 0} };

With this simple enhancement to your graphic application,

you will be allowing your customer to easily organize and

search on their graphic files in Adobe Fetch. Even if Fetch has

a built-in filter for the file formats that your application

exports, storing a thumbnail and preview in the pnot resource

is still a good idea. Cataloging and previewing files with a pnot

resource is dramatically quicker if you do this.

More Information

For more information about the pnot resource and how to

make your applications pnot aware, refer to the Fetch

Compatibility Toolkit. This toolkit is located on the Spec

Pack CD from the Adobe Developers Association or can be

downloaded from the Adobe Bulletin Board and ftp server.

When you are ready to implement pnot for your application,

you should order the QuickTime Developer’s Kit from Apple

to ensure you have the latest information.

8 A D A N e w s V o l u m e  , N u m b e r 

When a new developer first attempts to write a plug-in

(formerly called an addition), one of the most confusing steps

is that of getting the plug-in to show up in the appropriate

menu. The process of registering a plug-in was not described

clearly in the initial documentation, and so will be revisited

in the next printing of the plug-ins documentation. In the

meantime we’ll address plug-in registration for the Macintosh

in this month’s column and registration for the PC in next

month’s column.

Registration Basics

When the Adobe PageMaker™ program is launched, it finds

and registers all plug-ins that are in the Addition sub-folder

within the Usenglsh sub-folder within the standard Aldus

folder (Aldus:<language folder>:Addition). Adobe PageMaker

reads the resource information for the plug-in, which is a

code resource on the Macintosh and a DLL on the PC, and

retrieves the name and ID of each plug-in. With this infor-

mation PageMaker can build the Additions menu. When a

plug-in is selected from the menu, PageMaker retrieves the

id for that plug-in and loads the plug-in into memory.

On the Macintosh

As mentioned previously, when the PageMaker application

is launched, it finds and registers all plug-in libraries that are

in the Addition sub-folder. The plug-in library must be built

as a code resource; and, in order for it to be registered by

PageMaker properly, it must contain an ADNI resource in its

resource fork. For each plug-in in the library, the ADNI resource

should contain the following required fields: Menu name

index (that corresponds with an entry in a STR# resource),

Appear in menu, plug-in version, and Function ID. In the

course of registering the plug-ins, Adobe PageMaker creates

a menu item in the Utilities–Additions sub-menu for each

name listed in the ADNI resource.

To help you create this ADNI resource Adobe has provided

a ResEdit™ template called adni.tmpl. This template can be

found in the RESOURCE folder of the PageMaker Plug-ins

SDK along with a README file containing directions on

how to install the template into ResEdit.

ResEdit

The ResEdit template, adni.tmpl, simplifies the creation of the

ADNI resource. It is recommended that you use ResEdit 2.1 or

later. To use this template you simply copy it to the ResEdit

preference file. This is very straight-forward for those that

have used templates; for those who have not, simply follow

these steps:

₎ Open the adni.tmpl file with ResEdit.

₎ Copy the TMPL record into the clipboard.

₎ Open the ResEdit file in the Preferences sub-folder in the

System folder.

₎ Paste the TMPL record into the ResEdit preference file.

Now you’re ready to use it.

To create an ADNI resource in your plug-in’s resource fork

simply open the plug-in’s resource file in ResEdit and create

a new resource. If you installed the ADNI template correctly

there will be a ADNI resource type in the “Select New Type”

dialog. Double click on this type and you will get a window

that looks similar figure  that will allow you to define a ADNI

resource.

In the first block you should enter the version of your plug-in

interface. In the example in figure 1 we are using $0100 to

represent version 1.00. You should enter $0100

in this field.

9 A D A N e w s V o l u m e  , N u m b e r 

Adobe PageMaker

Developing With

Figure 1

Next select the “1) *****” in the template and then choose

“Insert New Field (s)” from the Resource menu. This will

cause the template to “fill out” and you can finish defining

the ADNI resource as shown in figure .

The Menu Name Index field refers to the ID of a STR#

resource that should contain the name of your plug-in

as you want it to appear in the Additions sub-menu.

The “Reserved Bit” radio buttons should all be ‘0’.

The “Appear in Menu” radio button needs to be set to ‘1’ in

order for the plug-in to appear in the Additions sub-menu.

The “Addition Version” field is for the version of your plug-

in. Again, in the example in figure , we use “$0100” for

version 1.00.

The “Function ID” field is for a number that can uniquely

identify each plug-in in the library. Since it’s possible to have

more than one plug-in per plug-in library the Menu ID’s and

Function ID’s must be unique for each. When the plug-in

library is invoked, the particular plug-in can be determined

by retrieving the function id via the macro PBGetID().

To create a second ADNI resource for a second plug-in in the

library simply select the “2) *****” and then choose “Insert

New Field (s)” from the Resource menu. This will cause a

second template to “fill out” and you can define it as before,

remembering to use a different menu and function id.

After you’ve finished, save the resource and you’re ready to

go. Next month we’ll discuss plug-in registration on the PC.

10 A D A N e w s V o l u m e  , N u m b e r 

Figure 2

The development system available for the Adobe Acrobat™ 2.0

family of products allows developers to integrate Acrobat

into their applications in a variety of ways. Here are our sug-

gestions for integrating Acrobat software with document

management systems.

Create PDF Automatically

Since PDF can represent any application file from any

platform, it is ideal for use as a universal file format.

Document management systems can provide an option to

automatically generate a PDF file whenever an application

file is checked into the system. This can be done by driving

the PDF Writer and/or the Acrobat Distiller.™

We recommend that you create a PDF file whenever a file is

checked in or modified, and then associate this PDF file with

the original application file.

Use Acrobat for Document Viewing and Annotating

Users frequently do not need, or are not permitted, to edit

a file, but still wish to view and possibly add comments to it.

By using Acrobat software as the viewing and annotating

portion of your document management system you allow

all users on the system to view any file, regardless of the

application or platform where the file was created. The first

step to using Acrobat for viewing is to create PDF files

automatically (see above). After that, the document manage-

ment system should show the PDF version of the file when-

ever a user without edit permission requests the file, or when

a user with edit permission requests only to view the file.

Document management systems can either present the PDF

file by invoking an Acrobat viewer or by rendering the PDF

file into their own window using either IAC or the Acrobat

Plug-in API.

Manage Annotations

Acrobat applications can be used for annotation management.

Annotations in Acrobat can be kept as separate files from the

PDF file they annotate and can be brought up in conjunction

with another PDF file. This allows all annotations for a specific

PDF file to be viewed simultaneously, and for security to be

used in conjunction with annotations.

File System Management

Document management systems generally have their own file

system, and do not use the underlying disk file system. For this

reason they should override the save, open and quit functions

in the Acrobat viewers to allow users to open PDF files directly

from the document management system.

Cross-document links in PDF files must contain the file id

instead of the pathname in order to access files in the document

management system. To do this, write a plug-in that replaces

the Acrobat Exchange cross-document link functionality.

Extract Thumbnails

Where the document management system presents an icon or

miniature representation of the file to the user, the system can

extract a thumbnail image directly from a page of the PDF file

using the plug-in API.

Read and Write Document Info Fields in PDF File

PDF files created with Acrobat 2.0 contain document informa-

tion such as title, subject and keywords. Document manage-

ment systems should populate the document information fields

when creating PDF files. These fields can then be used in a

variety of ways within the system, including as search qualifiers.

Index and Search PDF Files

Many document management systems allow users to search

collections of documents and present the search hits highlighted

to the user. For document management systems that incorpo-

rate Acrobat viewing technology, indexing and searching can

be done through the Acrobat system. Adobe is working directly

with full text search vendors to include support for PDF files in

existing full text search systems. If your document management

11 A D A N e w s V o l u m e  , N u m b e r 

A C R O B A T

c o l u m n

system is licensing full text search technology from an out-

side vendor, you should discuss Acrobat integration with

that vendor.

For indexing and searching PDF files directly, we provide

support through IAC and API calls. For indexing PDF files,

we provide text extraction APIs. Text extraction also supplies

position information that can be used to highlight search hits

in the original PDF file. The text extraction tools are provided

as calls in the plug-in API on the Acrobat Exchange 2.0

viewer platforms (currently, Macintosh and Windows);

highlighting is provided as API and IAC calls. A standalone

text extraction toolkit is currently available for SunOS™ 4.1.x

and Solaris® 2.3, and will be available soon for HP/UX. These

text extraction tools can be the basis of a PDF-only indexing

product or can add support for PDF files to a current

indexing product.

Provide Markup

As well as using the notes feature in Acrobat for comment-

ing on documents, users of document management systems

may wish to use a free-form markup tool, highlighting or

other custom annotation. Document management systems

can provide these tools to their users as plug-ins for Acrobat

Exchange.

Associate the PDF file

with its Original Authoring Document

One convenient way to keep documents and their PDF

representations together in the document management

system is to store the document inside the PDF file. Through

the use of ‘private data’ in a PDF file, a document manage-

ment system can embed the entire authoring document as

part of the PDF file that represents it. This way, not only is

the resulting electronic document viewable by anyone with

Acrobat, it is also editable by users who have the authoring

application. A plug-in for Acrobat would need to be written

to allow embedding and extracting of the authoring docu-

ment. This plug-in would simply add the authoring docu-

ment as a private data stream when embedding and, when

extracting, save the stream to a temporary file and invoke the

authoring application. Embedding can be done at the time

users check in the application files to the system and the

PDF file is automatically created. Acrobat viewers ignore this

private data. Embedding authoring documents in PDF files

will greatly increase the size of the PDF file and should not

be done in all cases.

An association between the PDF file and the authoring

document can also be maintained through the use of link in

the PDF file. In Acrobat 2.0, links can be created that will

invoke files and their associated applications. If a document

management system places such a link in the PDF file, then

the users can invoke the original authoring document by

executing the link.

And More

These are just a few suggestions for how to integrate Acrobat

technology into document management systems. The Acrobat

Software Development Kits contain all the information you

need to implement these suggestions and more.

12 A D A N e w s V o l u m e  , N u m b e r 

Writing PowerPC™ Native Plug-Ins for Adobe Illustrator™

Despite the fact that the plug-ins installed with the PowerPC

version of Adobe Illustrator are the same as their K

brethren, the API does provide a mechanism for creating

native PowerPC plug-ins and fat plug-ins. This allows

developers of speed-critical filters to take advantage of the

hardware. The mechanism is simple enough, though, that

all plug-in developers should consider going native. The

PowerPC compiler used in this discussion is a part of the

Metrowerks CodeWarrior environment.

There are several steps you need to follow to create a native

PPC filter. The first is to make certain that any Macintosh

toolbox callback routines are declared Universal Procedure

Pointers. UniversalProcPtrs (UPPs) are an interface to allow

the Power Macintosh® to operate in a mixed mode environ-

ment, where it switches between K and PowerPC code. The

most likely use of a toolbox ProcPtr within an Adobe Illustrator

plug-in is a filterProc passed to the dialog manager to allow

customized behavior. The Macintosh Dialog Manager is still

K code, but the filterProc of your native plug-in is PowerPC

code. To enable the different processor code to intermingle,

we need UPPs. It is a simple process to coerce the dialog filter

procedure callback, as the following example shows:

ModalDialog((ModalFilterUPP)params->functions->ModalDialogProc, &hit);

That’s all there is to it! You will need to identify the proce-

dures where the coercion is necessary and some may be

a little more involved than others, but in simple cases the

ModalFilterUPP is the only change needed.

The second step is to notify Adobe Illustrator that native PPC

code is available. PowerPC code is kept in the data fork of a

file rather than the resource fork. A PPC native application

uses a cfrg resource to indicate that PowerPC code is available.

Adobe Illustrator uses a similar mechanism, denoting a native

PPC filter’s existence with an ARTI resource. This resource

contains two long words ( bytes) of flags. In the current

version of Adobe Illustrator, the only bit defined is the lowest

bit of the second long word. It should be set to  to indicate

that PowerPC code is in the data fork.

ARTI (8 bytes) = 0x0000 0000 0000 0001

All of the other bits are reserved by Adobe for future use and

should be set to 0.

The last step is to build your modified project. Here you

must adhere to several conventions. There is one entry point

which must be declared to the linker, your main() procedure.

You don’t need an initialization or termination entry point.

The Export Symbols option of the PEF preferences must be set

to None. Lastly, the project type must be a shared library, not a

code resource. The file creator and type are the same as K

plug-ins, ART5 and ARTF respectively.

The rest of the filter is the same as a K filter. You still need

to include all the normal resources, of course. If you are

making a fat plug-in, your final file would include a ARTF

resource in addition to the ARTI resource. Both code types

coexist and the appropriate code will be used by the program.

When considering whether you want to develop a fat plug-in,

there are a few things to keep in mind. Processor intensive

tasks will definitely benefit from a native version. The biggest

cost of a PPC native plug-in is that PowerPC code will not

be as compact as its 68K equivalent. This means that a fat

plug-in could be quite large, a potential concern from the

standpoint of disk space. If a collection of fat plug-ins were

to exceed the capacity of a floppy disk, you might want to

evaluate whether they all truly benefit from their PPC

components.

You now know everything you need to get started. For more

information, a sample plug-in with some expanded docu-

mentation on creating PowerPC native plug-ins is available

in the Adobe Illustrator 5.5 Plug-In SDK. Contact the Adobe

Developer’s Association for a copy of the SDK. Go native!

13 A D A N e w s V o l u m e  , N u m b e r 

Adobe Illustrator

Developing With

In this month’s PostScript™ Language Technologies column, we

address a question about global memory, which we recently

received from one of our ADA members.

Q I would like to define some global variables in my PostScript

language program, so that their values will not be affected by

save and restore . I thought I could accomplish this by defining

the variables in global vm, using setglobal. The PostScript

Language Reference Manual, Second Edition, states that the

“creation and modification of global objects are unaffected by

the save-restore operators”. However, when I ran the following

code, the results were not what I would expect.

%!
% global memory test

true setglobal
/myStr (first string) def
/num 3 def
false setglobal

save
/myStr (new string) def
/num num 1 add def
restore
%%EOF

After running this short segment of code, I would expect that

num would have the value ‘4’, and myStr would now equal “new

string”, but these variables still have their original values of ‘3’

and “first string”. Why doesn’t setglobal work as I would expect?

A It is true that a global object’s contents are not affected by

the restore operator. However, your code does not modify the

contents of a global object, rather it modifies an object in

local VM, namely userdict. After the call to save, you call the

def operator twice. When called with an already-defined key,

def changes the value associated with that key in the current

dictionary. Figures  and  show how memory is affected by

these two calls to def. The values in userdict are changed, but

the string that was allocated in global VM is not changed.

The changes to userdict are subject to save/restore since userdict

is located in local VM.

In order to preserve the values of variables across calls to

save/restore, you may allocate a dictionary in global memory,

and define your variables in that dictionary. With a global

14 A D A N e w s V o l u m e  , N u m b e r 

LOCAL VM GLOBAL VM

userdict
key value

myStr

num 3

(first string)

LOCAL VM GLOBAL VM

userdict
key value

myStr

num 4

(first string)

(new string)

Figure . Memory snap-shot before call to save an operator.

Figure . Memory snap-shot before call to restore an operator.

PostScript

Language
T e c h n o l o g i e s

15 A D A N e w s V o l u m e  , N u m b e r 

C o l o p h o n

All proofs and final output for this

newsletter were produced using

Adobe PostScript software. The docu-

ment review process was accomplished

via electronic distribution using

Adobe Acrobat software. Typefaces

used are from the Minion™ and

Myriad™ families from the Adobe

Type Library.

Managing Editors:

Nicole Frees, Debi Hamrick

Technical Editor:

Jim DeLaHunt

Art Director:

Karla Wong

Designer:

Lorsen Koo

Contributors:

Matt Foster, Nicole Frees,

Mike Mitchell, Carrie Requist,

Michelle Sellars

Adobe, the Adobe Logo, Acrobat, Distiller, the

Acrobat logo, Fetch, Adobe Illustrator, Aldus,

Minion, Myriad, PageMaker, Adobe Photoshop,

PostScript, the PostScript logo, and Adobe Premiere,

are trademarks of Adobe Systems Incorporated or

its subsidiaries and may be registered in certain

jurisdictions. Windows is a registered trademark

of Microsoft Corporation. Macintosh, Power

Macintosh, and QuickTime are registered trade-

marks, and ResEdit is a trademark of Apple

Computer, Inc. Solaris is a registered trademark

of Sun Microsystems, Inc., which has not tested or

approved this product. SunOS is a trademark of

Sun Microsystems, Inc. PowerPC is a trademark

of International Business Machines Corporation.

All other brand and product names are trademarks

or registered trademark of their respective holders.

©1995 Adobe Systems Incorporated.

All rights reserved.

Part Number ADA0055 2/95

dictionary as the current dictionary, calls to def will not be

affected by save/restore. With this in mind, to get the results

that you expected originally, you could rewrite your code

as follows:

%!
% new global memory test

true setglobal
/myGlobalDict 3 dict def
myGlobalDict begin

/myStr (first string) def
/num 3 def

end
false setglobal

save
true setglobal
myGlobalDict begin

/myStr (new string) def
/num num 1 add def

end
restore
%%EOF

The reason that the line “true setglobal” is needed after the

call to save is to ensure that (new string) is allocated

in global VM. Otherwise, an invalidaccess error would occur

upon the attempt to store a local string object into a global

dictionary. The value of setglobal is irrelevant to the behavior

of the def operator; it only affects how new composite

objects, such as (new string), are allocated. Also note that you

could also use globaldict instead of the explicitly created global

dictionary, myGlobalDict.

16 A D A N e w s V o l u m e  , N u m b e r 

Q With the Adobe Illustrator API, how can I found out if a text

object is point text, text in-a-path or text on-a-path ?

A The GetArtType() call only indicates that an object is of

general type text, kTextArt. You need to use two API calls on

the text objects path to obtain the desired information. The

GetTextPathPath() function works on in-path or on-path text

objects. The handle returned by it will be nil if point text

objects are passed to it, since point text needs only a position

point and not an effective path. GetTextPathOffset() only works

with text paths of on-path text objects. Other text types do

not have an offset position and will cause an error code to be

returned. These calls and conditions are used in the C routine

below to determine the text type. The routine works with the

Macintosh 5.x headers files.

enum {

kPointText = 20,

kOnPathText,

kInPathText

};

short GetTextType(AIFilterPB *pb, AIArtHandle textArt)

{

AIFunctions *k = pb->functions;

FXErr error;

AIArtHandle textPath,realPath;

Fixed offset;

k->GetFirstTextPath(textArt,&textPath);

k->GetTextPathPath(textPath,&realPath);

// If the child is null, then we have point text

if (!realPath)

return kPointText;

// The text has a child, check to see

// if it is on-path or in-path text

if (error = k->GetTextPathOffset(textPath,&offset))

return kInPathText;

return kOnPathText;

}

Q With the Adobe Illustrator API, is it normal that the matrix I

use for transforming paths cannot be used directly to transform

text objects? I have to invert the rotation angle before it works.

A Yes, there is a difference in the rotation matrices used for

various art objects. A regular rotation matrix can be used for

path art and placed art. The rotation matrix for text must be

inverted as shown in order for it to work.

FXErr error;
short type;
FixedMatrix matrix;

//set up expected matrix
...
k->GetArtType(art, &type);
if (type == kTextArt) {

matrix.b = -matrix.b;
matrix.c = -matrix.c;
}

...

